
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/6834061

Software for Generating Psychological Experiments

Article in Experimental Psychology · February 2006

DOI: 10.1027/1618-3169.53.3.218 · Source: PubMed

CITATIONS

43
READS

375

Some of the authors of this publication are also working on these related projects:

Evaluative Conditioning View project

All content following this page was uploaded by Christoph Stahl on 04 February 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/6834061_Software_for_Generating_Psychological_Experiments?enrichId=rgreq-48d151d2352a01c3171cd27cc7340b99-XXX&enrichSource=Y292ZXJQYWdlOzY4MzQwNjE7QVM6MTkzMDY0ODk2MzM5OTcwQDE0MjMwNDE2NjcxODg%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/6834061_Software_for_Generating_Psychological_Experiments?enrichId=rgreq-48d151d2352a01c3171cd27cc7340b99-XXX&enrichSource=Y292ZXJQYWdlOzY4MzQwNjE7QVM6MTkzMDY0ODk2MzM5OTcwQDE0MjMwNDE2NjcxODg%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Evaluative-Conditioning?enrichId=rgreq-48d151d2352a01c3171cd27cc7340b99-XXX&enrichSource=Y292ZXJQYWdlOzY4MzQwNjE7QVM6MTkzMDY0ODk2MzM5OTcwQDE0MjMwNDE2NjcxODg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-48d151d2352a01c3171cd27cc7340b99-XXX&enrichSource=Y292ZXJQYWdlOzY4MzQwNjE7QVM6MTkzMDY0ODk2MzM5OTcwQDE0MjMwNDE2NjcxODg%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christoph_Stahl?enrichId=rgreq-48d151d2352a01c3171cd27cc7340b99-XXX&enrichSource=Y292ZXJQYWdlOzY4MzQwNjE7QVM6MTkzMDY0ODk2MzM5OTcwQDE0MjMwNDE2NjcxODg%3D&el=1_x_10&_esc=publicationCoverPdf

Experimental Psychology 2006; Vol. 53(3):218–232 � 2006 Hogrefe & Huber Publishers
DOI 10.1027/1618-3169.53.3.218

Software for Generating
Psychological Experiments

Christoph Stahl

Albert-Ludwigs-Universität Freiburg

Abstract. This review compares four software packages for generating and running psychological computer experiments. It aims to inform
researchers’ decisions about which software to choose for their lab. Four widely used general purpose commercial packages available for the
Windows platform are considered: DirectRT, E-Prime, Inquisit, and SuperLab. An overview of each package is given, and the implementation
of two test experiments is described. Packages are evaluated with regard to the amount of complexity reduction they provide for the task of
programming an experiment and the variety of experimental designs they can accommodate.

Keywords: experiment generation, software, computer experiments

1 Because the DOS platform is outdated (i.e., is no longer supported by its manufacturer), new hardware devices are often not supplied with
a device driver for that platform.

2 The current DirectX version is freely available from http://www.microsoft.com/directx/homeuser/downloads/default.asp.

For researchers in experimental psychology, the per-
sonal computer serves as an indispensable tool: it presents
visual and sound stimuli and registers participants’ re-
sponses from an array of different devices (e.g., keyboard,
mouse, voice key, external devices) with high temporal
accuracy.

To implement a study on a computer, researchers can
either learn a programming language, or they can use one
of the various available software packages for creating and
running psychological experiments. These software pack-
ages attempt to reduce the programming skills necessary
to create psychological computer experiments by either
providing an experiment definition syntax with a small set
of commands or a visual drag-and-drop interface. Thus,
they reduce the complexity of the problem of programming
a computer experiment. Yet, this sometimes comes at the
cost of reduced flexibility: A reduced set of commands can
implement only a reduced set of experimental paradigms.
This review will focus on the ease of implementing stan-
dard paradigms as well as on the flexibility to implement
a wide variety of paradigms.

Software packages for creating and running psycholog-
ical computer experiments on the Windows operating sys-
tem are considered if they are stand-alone packages (e.g.,
Matlab-based packages were not considered), are not fo-
cused on a subset of paradigms or bundled with measure-
ment hardware (e.g., fMRI), and if user support is offered
by the distributor. DOS-based packages (e.g., ERTS,
NESU) are not considered because of limited hardware
support.1 The discussion section points to software pack-
ages that are not included in this review but are especially
well-suited for psychophysics experiments, for Web-based
research, or for teaching.

Table 1 presents the availability and requirements of the
four packages included in this review: DirectRT (2004),

E-Prime (2004), Inquisit (2004), and SuperLab (2004). All
four packages rely on DirectX technology2 to support stim-
ulus presentation and response registration with high tem-
poral resolution, and to interact with the output (e.g., video
and sound) and input interfaces (e.g., keyboard, mouse, and
joystick) available for the Windows operating system. The
reviewed packages claim millisecond accuracy in stimulus
presentation and response registration; supporting evidence
has been reported for Inquisit (De Clercq, Crombez,
Buysse, & Roeyers, 2003). It is beyond the scope of this
review to provide a test of that claim for the other packages.
In general, some caution is necessary regarding timing ac-
curacy on a Windows operating system: Because it sup-
ports multithreading, (i.e., multiple processes running at
the same time, sharing one central processing unit), perfect
timing accuracy cannot be warranted (see also Myors,
1999). If an experiment program—be it one of the above
mentioned packages or self-programmed—is to present a
stimulus at time t, it can do so accurately if no other pro-
cesses are running. If, however, another program is running
in addition to the experiment program, it might occupy the
central processing unit at time t and thus delay stimulus
presentation. Yet, within the DirectX framework, several
measures can be taken to minimize this and other sources
of timing error (e.g., Forster & Forster, 2003), and it can
thus be assumed that timing accuracy is potentially high
for the reviewed packages (MacInnes & Taylor, 2001;
Plant, Hammond, & Whitehouse, 2002).

The aim of this review is to inform the decision for an
experiment generation software package by describing
how each package attempts to reduce the complexity of the
programming task. A description of each software package
is given, considering the package’s installation, stimulus
and response features, the general approach to creating an
experiment, running an experiment, as well as the data out-

Stahl: Experimenting Software 219

� 2006 Hogrefe & Huber Publishers Experimental Psychology 2006; Vol. 53(3):218–232

Table 1. Availability and requirements . . .

Software Package

Feature DirectRT E-Prime Inquisit SuperLab

Manufacturer Empirisoft Psychology Software Tools Millisecond Software Cedrus
Web site www.empirisoft.com www.pstnet.com www.millisecond.com www.superlab.com
Price for single
license

$ 875,- (Academic
License: $475,-)

$ 695,- $ 745,- (Academic
License: $ 395,-)

€ 620,- (Educational
Price € 530,-)

System
requirements

Microsoft Windows 95,
98, ME, 2000, or XP;
DirectX 7 or higher

Microsoft Windows 95, 98,
ME, 2000, or XP; DirectX;
100 MB of hard drive space,
USB or parallel port

Microsoft Windows 98,
ME, 2000, or XP,
DirectX; 10 MB of
hard disk space

Microsoft Windows 95
or later, 1.5 MB of
hard disk space

3 The paradigms can be implemented in more than one way within each package. Therefore, it is possible that an experienced user can come
up with less complex definitions than those provided here. However, because the present implementations were corrected and optimized
by the manufacturers, these differences should be negligible.

put generated. Two test experiments are implemented
within each package, allowing a closer look at their
strengths and weaknesses. Table 2 presents a feature over-
view and summary of the results. The packages are dis-
cussed with regard to their flexibility and ease of use.

Test Experiments

To compare ease of use and flexibility of the packages, two
experimental designs were implemented within each pack-
age: a Remember/Know test frequently used in the memory
domain, and a Lexical Decision task that is common in
priming research (a detailed description of the experi-
ments’ methods is given in the Appendix). During the im-
plementation, an attempt was made to reduce the complex-
ity of the task of generating an experiment and of the
experiment definition itself. The implementations were
then reviewed and optimized by the package manufactur-
ers.3 They are available from http://www.psychologie.uni-
freiburg.de/Members/stahl/Expsoft.

Remember/Know Paradigm

In a Remember/Know paradigm, participants give judg-
ments about their mnemonic states for a list of stimuli some
of which they were presented with before. Typically, three
response options are available: (a) Participants give a re-
member response to an item if they have a clear recollec-
tion of at least one aspect of that item’s presentation epi-
sode, for example, its color; (b) a know response is given
if participants are confident that the item has been pre-
sented based on its familiarity but cannot recollect any de-
tail from its presentation episode; and (c) a new response
indicates participants’ judgment that the item has not been
presented before.

Besides being presented simultaneously, these options
are often presented sequentially. In these studies, partici-
pants first have to indicate whether or not an item has been
presented before. Only after a positive response, a second

screen presents the question regarding the mnemonic state,
together with the response options remember and know.
Thus, the second question conditionally appears depending
on the answer to the first question. This is an important
feature for an experimenting software package to support,
as it can be required in a range of other paradigms (e.g.,
source memory, adaptive testing). The experiment will be
implemented in the sequential version, if possible.

In the retention interval preceding the memory test
phase, participants are to solve randomly created arithmetic
problems for a fixed time of 5 minutes. Participants are to
provide the solution by typing it on the keyboard. This
solution is to be recorded and checked for accuracy, and
feedback is to be given regarding the accuracy of solutions.

During the implementation of this paradigm, three criti-
cal features will be focused on: first, presenting stimuli
conditional on the participants’ responses; second, ran-
domly generating arithmetic problem trials with open-
ended text responses (i.e., participants are free to enter any
sequence of characters, such as numbers or text); and third,
accuracy feedback.

Lexical Decision Paradigm

In a Lexical Decision task, participants decide if a letter
string (e.g., butter or cbdghs) is a word or not. This task is
often used in semantic priming studies. In these studies,
just before the target’s presentation, a prime is presented
briefly. When prime and target are related semantically, for
example, when the word bread is presented as a prime
shortly before the target word butter, responses are facili-
tated compared to when no prime is presented or when an
unrelated prime (e.g., the word shoe) is presented.

This type of task is subject to the problem of speed-
accuracy trade-off (a fast response is more likely to be
incorrect, and a correct response is more likely to be slow),
and variance of interest will likely be found in the latency
data as well as in the accuracy data. A response window
procedure can help to reduce this problem: Here, partici-
pants are required to respond within a short period of time
(e.g., between 300 and 700 ms after stimulus onset). By

Stahl: Experimenting Software220

Experimental Psychology 2006; Vol. 53(3):218–232 � 2006 Hogrefe & Huber Publishers

Table 2. Feature overview and summary . . .

Software Package

Feature DirectRT E-Prime Inquisit SuperLab

Features required for Remember-Know paradigm
Conditional presentation yes yes yes no
Random generation of arithmetic problems yes* cbi no no
Accuracy feedback yes* yes yes single-key responses
Features required for LDT with adaptive response window
Fixed window yes yes yes no
Adaptive window no cbi yes no
Block feedback no cbi yes no
Randomization and stimulus selection
Random trial order yes yes yes yes
Random stimulus selection with replacement yes yes yes no
Random stimulus selection without replacement yes yes yes no
Balanced orders cbi yes cbi cbi
Superimposing stimuli yes yes yes no
Randomized assignment of participants to conditions yes yes no no
Multiple sessions per participant cbi yes cbi cbi
Features for psychophysical research
Stimulus adjustment no cbi no no
Stimulus calibration no no no no
Adaptive testing no cbi cbi no
Summary judgments
Support quality 1 3 2 n/a
Implementation time 1 2 3 4
Handling ease 1 2 3 4
Flexibility 3 1 2 4

Note. yes � feature is supported; cbi � feature is not supported but can be implemented; no � feature cannot be implemented; * see
text. Summary judgment values represent rank orders, with 1 � best ranking.

introducing a response window, variance within the latency
data is reduced, and the variance of interest will more likely
be found in the accuracy data. To avoid floor and ceiling
effects in the accuracy data, the response window can be
adapted to each participant’s individual performance. After
each block, mean accuracy is measured; the response win-
dow onset and offset times are increased by a specified
amount if mean accuracy falls below a lower criterion, and
decreased if mean accuracy rises above an upper criterion.

Flexibility of response options will be the focus during
implementation of the Lexical Decision paradigm. If pos-
sible, it will be implemented with an adaptive response
window; if not, a fixed response window or a fixed time-
out is used.

Description of the Software Packages

DirectRT

Installation and Interface

In addition to the main program, the installation includes
help files, sample experiments, and software tools to merge
data files and test the parallel port and sound interfaces.
Upon starting the program, a single window opens provid-
ing a set of menu commands. To create an experiment, an
external editor (e.g., Notepad) is opened from the File

menu. The Edit menu allows creating and modifying
DirectRT presentation styles. Presentation styles define the
visual properties of a text stimulus, for example its font,
color, and size, as well as the response time-out setting for
the stimulus. The Tools menu provides several diagnostic
functions (e.g., a test of the monitor refresh rate, access to
information about the display and sound interfaces and
about input devices, setup and testing of DirectRT’s voice
input feature, and a tool to test TTL signal communica-
tion). The Help menu provides access to a detailed descrip-
tion of the software and its user interface as well as to about
20 sample experiments that can be used as templates in
experiment generation. Figure 1 shows the DirectRT win-
dow, an experiment definition file, and the style editor.

Stimulus and Response Options

A word or line of characters can serve as a stimulus, as
well as a longer passage of text, an image, sound, video,
or an animation. DirectRT registers participants’ responses
from keyboard, mouse, joystick, and microphone. In ad-
dition to key press times, the time it takes to release a key
can optionally be registered for keyboard responses.
DirectRT also supports TTL signals from the parallel port
and joystick motion (as a discrete or as a continuous vari-
able). In addition to computing speech onset times as a
dependent variable from the microphone input, the vocal
response is optionally saved to disk for additional analy-

Stahl: Experimenting Software 221

� 2006 Hogrefe & Huber Publishers Experimental Psychology 2006; Vol. 53(3):218–232

Figure 1. The DirectRT program window, experiment definition example, and style editor.

4 This feature should be used with caution, however, because as one reviewer remarked, accessing the computer’s hard disk during experiment
execution may interfere with time measurement and other procedures.

ses.4 Together with the microphone input, an additional
keyboard response can be collected (e.g., for coding of
vocal responses by the experimenter).

Creating an Experiment

DirectRT simplifies the creation of an experiment by re-
ducing the set of commands needed to define the trials and
blocks that make up an experiment, and by using a simple
text file format for its definition files. DirectRT experi-
ments consist of a simple list of trials that are processed
successively. Each trial is defined on a separate line by
eight required values. These include the following: number
of block, number of trial, number of presentation style (de-
noting a specific font size and color setting), stimulus con-
tent, stimulus presentation location, presentation duration
or type of response, and two parameters controlling ran-
domization of trial and block order. For stimulus content,
the name of the file containing the stimulus is specified in
case of images, sound, and video, or longer passages of
text. Alternatively, if the stimulus consists of a single word,

it can be included into the experiment file directly. As a
third possibility, a text file can be specified that contains
the names of the stimulus files. Location of stimulus pre-
sentation on-screen can be specified either in percentage or
pixel values. Presentation duration is specified in millisec-
onds. For stimuli that require a response, the response de-
vice and the valid and correct responses keys are specified.
The presentation sequence can be specified to continue
with different trials conditional on participants’ responses.
By adding values for their content, presentation location,
and presentation time, any number of stimuli can be added
to each trial. A response can be registered for each of these
stimuli.

The two remaining parameters control randomization
between groups and randomization within groups of trials:
The presentation order of two groups of trials can be ran-
domized, and trial order can be randomized within a group
of trials. Additionally, stimuli can be selected randomly
with or without replacement from specified stimulus lists
or from separate text files containing stimuli. Numerical
values can be selected at random, either from a specified
set of values or from a specified range.

Stahl: Experimenting Software222

Experimental Psychology 2006; Vol. 53(3):218–232 � 2006 Hogrefe & Huber Publishers

5 Empirisoft announced that these features will be included in the next release of DirectRT.

Running an Experiment

Once created, an experiment definition file can be executed
either via the File menu, or from the command line. The
participant’s number, experimental condition, and the
range of trials to be run have to be entered at start, or they
can alternatively be specified in the command line call.
Experiment execution can be terminated by pressing the
Escape key. Pressing the Windows key or the Alt�Tab
key combination results in switching to other programs’
windows, or to the Desktop. This can be a problem when
participants accidentally press the Windows key. It can be
solved by switching back to the experiment window, which
causes the execution of the experiment to continue.

Data Output

Data are stored in two comma-separated text files, one con-
taining a complete log of the session, and the other con-
taining only a subset of values. This subset includes the
participant, condition, block, trial, trial order, code and
name of response key, stimulus content, reaction time, and
correctness of response variables. The complete log file
contains additional data on date and time, the experiment
file that was run, the actual onset of each trial computed
from the start of the experiment, the actual duration of each
trial, as well as content and actual presentation duration for
each stimulus of that trial. DirectRT provides software
tools to merge and reduce data files to a single line per
participant.

Implementing Test Experiments

Remember/Know Paradigm

The presentation part of the experiment is quickly created
by modifying a sample experiment included with the pack-
age. The instructions are defined on a single line each (with
the respective texts contained in separate text files). Ran-
dom presentation of rote versus imagery instructions is ac-
complished with a random jump from the welcome page
to either one of the instruction pages. Subsequently, exe-
cution continues with the presentation of stimuli. For each
stimulus, a separate line is included in the definition file,
and stimuli are selected at random from a separate text file.
Although these trial definitions do not differ except in trial
number, further simplification (e.g., by defining the num-
ber of repetitions of a trial) was not possible.

Generating the retention interval task of randomly cre-
ated arithmetic problems is more difficult. First, the dura-
tion of the arithmetic problems block could not be specified
within the package. Second, while generating random mul-
tiplication problems was easily accomplished, it was not
possible to provide accuracy feedback for these. This was
due to the fact that open-ended responses could not be
checked for accuracy.

These limitations were largely removed in a new version
of the software that was supplied by Empirisoft upon re-
quest. The new release allowed a time-out to be specified

such that the retention interval is aborted and the first trial
of the memory test block is automatically executed after
the specified time. Also, the new release allowed open-
ended responses to be checked for accuracy. However, this
applies only to each individual trial—feedback is not pos-
sible at the block level. Also, randomly generated arith-
metic problems cannot be checked for accuracy because
correct responses have to be specified in the definition file
before the problems are randomly generated. Thus, a fixed
set of arithmetic problems was created manually. The set
size was chosen large enough to avoid running out of prob-
lems for fast participants. The retention interval was re-
stricted to 5 minutes, and accuracy feedback can now be
given for each of the arithmetic trials (but not for the entire
block).

The Remember/Know memory test was implemented in
its sequential variant in DirectRT. For the memory test
block, the old/new question was added to the presentation
block trials as an additional stimulus; and in the response
options, the valid and correct response keys were specified
instead of a time-out value. Similarly, a Remember/Know
stimulus is added to each probe item; and a conditional
jump is inserted such that in case of a new response, the
Remember/Know question is not presented. The regular
data file contains the data from the old/new trial in case of
a new response, and the data from the Remember/Know
trial in case of an old response (if the reaction time data
for the old/new response is required, it can be extracted
from the log file). Thus, with the exception of some minor
points, the Remember/Know memory test was successfully
implemented.

Lexical Decision Paradigm

Building on a sample provided with the installation pack-
age, the definition file for this experiment was easily cre-
ated. Different text files were used to store primes and tar-
gets, with corresponding order for primes and targets.
Stimulus selection was set to sequential sampling from
each text file, and trial order was randomized. Thus, each
prime-target pair was presented together on a trial.

An adaptive response window feature is not incorpo-
rated in DirectRT. As an alternative, a fixed response win-
dow was implemented. This was achieved as follows: An
additional stimulus is added to each trial (a black “!”) to
indicate the window onset; it is displayed 300 ms after
target presentation and replaced by a red “!” after an ad-
ditional 400 ms, indicating window offset. A response
within the window causes a jump to a feedback trial indi-
cating a response within the window (a green “!” is pre-
sented for 300 ms) and the accuracy of the response. As
mentioned above, the current release of DirectRT does not
support block-level feedback on mean latencies and error
rates.5

In summary, the Remember/Know paradigm was imple-
mented largely as intended, and the Lexical Decision task
was implemented with a fixed instead of an adaptive re-
sponse window. Some limitations were encountered: First,
it was not possible to simplify the definition of the struc-

Stahl: Experimenting Software 223

� 2006 Hogrefe & Huber Publishers Experimental Psychology 2006; Vol. 53(3):218–232

turally identical trials in the presentation phase, the old/
new memory test, or the conditional Remember/Know
memory test. Second, the randomization feature only sup-
ports the generation of arithmetic problems that do not in-
clude accuracy feedback. Third, when both old/new and
Remember/Know responses are collected for one item,
only the latter is stored in the regular data file, requiring
additional effort if one also wants to analyze the former
responses. Finally, performance feedback is not available
beyond trial-based accuracy messages.

E-Prime

Installation and Interface

The E-Prime software package consists of five modules:
Experiments are created with E-Studio and run with E-
Run; three additional tools are available to merge and an-
alyze data, and to recover lost data. E-Prime is copy-pro-
tected by a hardware key system: To use the software, a
hardware key that is available for the USB or parallel ports
has to be plugged into the system. Installation of the soft-
ware as well as saving a newly created or modified exper-
iment is possible only if the key’s presence is detected by
the software. Once saved, an experiment can be run on an
unlimited number of computers. Figure 2 presents the E-
Prime window with the LDT experiment definition file
loaded.

Stimulus and Response Options

E-Prime registers responses via keyboard, mouse, and ex-
ternal response boxes connected to the serial port, as well
as TTL signals from the parallel port. Multiple options can
be realized for each trial. A new version of the E-Prime
package is announced for the near future that is expected
to include support for presenting video stimuli, presenting
stimuli on multiple monitors, and recording vocal re-
sponses.

Creating an Experiment

E-Prime’s approach to reducing the complexity of the task
of programming a computer experiment strongly parallels
the approach taken by modern computer programming en-
vironments like Borland’s Delphi. In these environments,
instead of writing each line of code by hand, programmers
can add components and features to their program by se-
lecting a corresponding icon from a toolbar and dropping
it at the desired location. The program code required for
the component or feature is added automatically in the
background. The component’s available options and attrib-
utes can be specified via the visual interface as well so that,
typically, a much smaller portion of the program’s source
code has to be created manually.

The user interface of the main program, E-Studio, re-
sembles such a visual programming environment (see Fig-
ure 2). Upon startup, three windows are presented on-
screen: the Structure, Toolbox, and Properties windows.
The first window shows a hierarchical tree view of the
experiment’s components. These are arranged onto a line

representing the time axis. A new experiment consists of
an empty time line. To create an experiment, components
(e.g., stimuli or blocks) are added to the time line. The
available components are listed in the Toolbox window.
From there, a selected component (e.g., a text stimulus
component) is dragged onto the time line and dropped at
the desired position. The properties of the currently se-
lected component (e.g., the text to be presented; its font,
color, position, and alignment; as well as timing and re-
sponse options) can be viewed and edited in the Properties
window.

Experimental blocks are implemented with the List com-
ponent. A list basically consists of a table, with columns
representing the factors and rows representing the levels of
the factor. Within one list, a single factor or multiple fac-
tors can be realized; alternatively, multiple lists can be
nested to realize multiple factors. In addition to specifying
experimental blocks, lists can also be used to specify trials.
In that case, each row represents a trial, and the columns
represent the trials’ attributes. A time line is added to each
list onto which the subordinate components are then
placed. For example, a trial list’s time line would contain
a stimulus component presenting a fixation cross as well
as the prime and target stimulus components. The attributes
defined in a list component can be used as variables within
the subordinate time line. To present a different word on
each trial, the set of words is added to a trial list, and the
column containing the words is passed as a variable to the
text stimulus component located on the subordinate time
line.

A Wizard feature is available to guide through the steps
of the generation of simple choice reaction time paradigms.
Ideally, those experiments (e.g., simple sequential priming
or recognition memory tasks) can be created entirely from
the drag-and-drop interface. For these, the E-Prime user
does not need to learn any set of commands or write a line
of code. At times, however, one will want to implement
more complex designs, and those might not be supported
by the drag-and-drop interface. A unique feature of the E-
Prime package is that in addition to (or as an alternative
to) creating an experiment via the visual interface, one can
use the integrated programming language E-Basic (that is
similar to Visual Basic, a widely used programming lan-
guage) to add to or modify the experiment. This is sup-
ported by E-Prime in three ways. First, one of the objects
that can be dropped onto the experiment time line, the In-
line object, is a container for custom E-Basic program code
(see Figure 3 for an example). Thus, a stimulus, response,
or computation (e.g., a complex stimulus selection or
matching procedure) that is not supported by E-Prime’s
drag-and-drop components can be added by including the
necessary program code as an Inline object. Second, cus-
tom E-Basic program code can be packaged in special files
from which the code can directly be executed. This is es-
pecially useful for reusing procedures or components in
multiple experiments. Finally, E-Prime experiments are
stored as E-Basic source code files that are compiled into
an executable program by the E-Run module for each ses-
sion anew. Thus, an experiment generated within E-Prime
and saved to disk as source code can be modified and cus-

Stahl: Experimenting Software224

Experimental Psychology 2006; Vol. 53(3):218–232 � 2006 Hogrefe & Huber Publishers

Figure 3. An example Inline object with E-Basic code.

Figure 2. The E-Prime program window showing the LDT session time line and trial list.

tomized before execution by a Basic programmer. To assist
with the interface and with writing custom program code,
a User’s Guide and an extensive reference for the E-Basic
programming language is provided in electronic and
printed form.

Running an Experiment

On the experimenter’s computer, an E-Prime experiment
can be executed from within the E-Studio experiment gen-
eration program by clicking the Run button or by pressing
the F7 key. On participants’ computers, an experiment is
executed analogously from within the E-Run program or
from the command line. Beyond stimulus and session num-
ber, E-Prime can be configured to collect any other re-
quired participant information before the start of an exper-
iment, for example age, gender, or handedness. Pressing
the Windows key or the Alt � Tab keys results in switch-

ing to other programs’ windows or to the Windows Desk-
top. The execution of an E-Prime experiment terminates
with an error in that case.

Data Output

E-Prime creates two types of output files for a session. In
a plain-text file, it keeps a human-readable log of all stimuli
and responses. The same data is written to a data file that
serves as an input to the E-Merge and E-DataAid modules.
E-Merge provides a drag-and-drop interface to combine
individual sessions’ and/or participants’ data into a single
data file that can subsequently be opened with E-DataAid
to discard irrelevant variables, filter cases, compute a va-
riety of initial statistics, and convert data into formats read-
able by general-purpose statistics packages.

Stahl: Experimenting Software 225

� 2006 Hogrefe & Huber Publishers Experimental Psychology 2006; Vol. 53(3):218–232

6 The author wishes to thank an anonymous reviewer for pointing this out.

Implementing Test Experiments

Remember/Know Paradigm

On the session time line, list components representing ex-
perimental blocks were added for the instruction, presen-
tation, retention interval, and memory test blocks. The in-
struction list consists of a factor with two levels, one of
which is randomly drawn, resulting in one of the two in-
structions being presented by a text stimulus component
located on the associated time line. The presentation list
consists of 30 levels containing the word stimuli, all of
which are presented in a random order. The retention in-
terval list contains one dummy trial with three placeholder
values for the two numbers to be multiplied and the result.
The dummy trial is repeated until the end of the retention
interval; its duration is specified as time-out for the reten-
tion interval block. A small piece of program code is in-
serted to randomly generate the to-be-multiplied numbers
for each trial anew. Feedback on accuracy on the response
as well as on mean accuracy is given, and the numbers and
accuracy data are written to the data file for each trial. The
memory test list contains the 30 target stimuli along with
the 30 distractor stimuli; the order of test trials is random-
ized. An inline object contains a line of custom program
code that skips the execution of the Remember/Know trial
after a new response.

Lexical Decision Paradigm

The Lexical Decision task is quickly created by adding two
instruction pages and a top-level list object to the session
time-line. The top-level list object represents the between-
subject factor; two levels are created for the two conditions.
A time-line is added to the top-level list object; then, a
second list object is dropped onto that time line and pop-
ulated with 80 levels representing the trials. Two attributes
are added to the list object as containers for the prime and
target stimuli, and an additional attribute is added for each
level of the between-subjects factor to specify the correct
response for each trial. The prime-target combinations are
created manually and entered into the list object via copy
and paste.

The trial time line contains the fixation, prime, masks,
and target stimuli, as well as the response window stimuli.
Although E-Prime does not provide any response window
feature, a fixed or adaptive response window can be im-
plemented nevertheless. To that end, a dummy stimulus is
added to register responses after the end of the target stim-
ulus presentation. The target stimulus component is set to
register responses only until the start of the response win-
dow, but remains on-screen. If a response occurs within
that period, execution continues with the presentation of a
too fast message. If no fast response occurs, a transparent
screen is presented as a dummy stimulus for the entire re-
sponse window period to register participants’ responses.
If a response occurs within the window, execution contin-
ues with the presentation of a hit stimulus. If no response
occurs within the window, a too slow message is presented.

Responses that occur within the window are considered for
computation of participants’ accuracy. Accuracy feedback
is given at the end of each trial.

To implement a fixed response window, the window on-
set time is specified as the target stimulus duration, and the
window width is specified as duration of the response win-
dow stimulus. Adaptation of the response window can be
accomplished via custom program code that keeps track of
accuracy and modifies timing values of the target and re-
sponse window stimuli such that the desired response win-
dow behavior results (see Figure 3 for the E-Basic code
that computes the response window parameters).

In summary, all objectives can be accomplished within
E-Prime. A few lines of custom program code are needed
to implement the generation of random arithmetic prob-
lems and the conditional Remember/Know trial. Additional
dummy and feedback stimuli are needed to simulate a fixed
response window feature. By adding a few lines of custom
program code, an adaptive response window was success-
fully implemented.

Inquisit

Installation and Interface

In addition to the program file, a help file and three sample
experiments are installed. Upon startup, the Inquisit pro-
gram presents itself as an empty editor window. Via the
Tools menu, comfortable testing options for the compo-
nents of the active experiment are available, as well as
options to select stimulus font and color settings, and to
modify and test settings for parallel and serial port com-
munication as well as speech recognition. The Help menu
provides access to the command syntax reference and links
to the Millisecond homepage and sample experiments pro-
vided there. Figure 4 shows the Inquisit program window.

As a unique feature, Inquisit can also assist with data
collection on the Web. A plug-in for the Internet Explorer
Web browser is available that presents Inquisit experiments
on participants’ computers (note that although the Internet
Explorer Web browser is widely used, the plug-in’s restric-
tion to that Web browser might result in biased data be-
cause potential participants that have no access to that Web
browser are excluded). The collected data can then be
stored on a remote server or sent to the experimenter by e-
mail. A data encryption option is offered that should al-
ways be used to avoid compromising the confidentiality of
data transmitted via e-mail.6

Stimulus and Response Options

Keyboard and mouse are supported as input devices, as
well as joystick and touch screen. Two parallel and two
serial ports of the computer can be used to interact with
external hardware via TTL or serial port signals. The op-
tional speech recognition unit selects the best match for a
vocal response from a set of words specified as valid re-
sponses. Vocal responses are registered through a standard
microphone or headset plugged into the sound adapter. In-

Stahl: Experimenting Software226

Experimental Psychology 2006; Vol. 53(3):218–232 � 2006 Hogrefe & Huber Publishers

Figure 4. The Inquisit program window showing the LDT experiment definition and the Object Browser.

7 HTML is a simple markup language designed to create World Wide Web pages.

quisit does not provide an option to store vocal responses
for later analysis.

Creating an Experiment

Inquisit addresses the complexity issue by specifying a re-
duced set of commands that is used to define experiments.
The set is smaller and defined on a more abstract level than
a programming language yet is not as simple as the list
format used by DirectRT. Regarding complexity and struc-
ture, an Inquisit experiment definition file can be compared
to an HTML7 file. Experiments are generated as a hierarchy
of objects, with experiment, block, trial, stimulus, and item
levels. Objects on a higher level act as containers for lower
level objects and can define attributes for the objects they
contain. On each of the levels of the hierarchy, different
elements can coexist. For example, multiple experiments
can be defined within one file, with each one executed for
a different subset of participants. Elements on the block,
trial, and stimulus levels are not strictly associated to one
higher level element but can be used by multiple higher
level elements. For example, an item object (e.g., defining
a set of stimulus words) can be used by multiple stimulus
objects, with each stimulus object presenting the same set

of words in a different color. Similarly, the same stimulus
object can be used by multiple trials; a trial, once defined,
can be included in multiple blocks, and one block can be
part of multiple experiments.

Randomization with and without replacement, as well as
sequential sampling, is supported for items of a stimulus,
stimuli within a trial, trials within a block, and blocks
within an experiment. Item selection can be linked between
two stimulus objects, thereby equating the order of selec-
tion for those two stimulus objects. In addition, counter
variables can be defined containing a pool of values drawn
in random or fixed sequential order to control stimulus se-
lection, position of stimuli on-screen, or time-out.

The behavior of each object is controlled by a series of
required and optional attributes, controlling, for example,
the visual features of a stimulus or its presentation duration.
A number of possible options for each object (e.g., a stim-
ulus’s font size, color, and position) can be defined on dif-
ferent levels of the hierarchy, with lower level definitions
overriding higher level definitions. For example, font size
and color can be defined on an experiment level (e.g., as
12 pt. black). Unless otherwise specified, all stimuli will
be presented in that font size and color. If one stimulus is
to be presented in a different color (e.g., an error message

Stahl: Experimenting Software 227

� 2006 Hogrefe & Huber Publishers Experimental Psychology 2006; Vol. 53(3):218–232

that is to appear in red), this can be defined as an attribute
of that specific stimulus; all other stimuli will continue to
be presented in black.

On the trial level, different objects support different re-
sponse formats. For example, the Trial object is used for a
fixed response trial, whereas the Openended object is used
for trials with open-ended text responses. Likert scales and
verbal naming responses are additional response format op-
tions. Inquisit provides an adaptive response window fea-
ture that is capable of adjusting response window center
and width to participants’ average response latency or ac-
curacy. Alternatively, fixed response windows can be spec-
ified at the experiment, block, and trial levels.

Because text stimuli are limited to a single line of text,
separate objects are available for presenting participants
with instructions. With these, entire pages of either non-
formatted plain text or HTML-formatted text can be pre-
sented.

Inquisit assists in defining objects and attributes through
a comprehensive syntax reference that also includes some
examples. The reference is context-sensitive: Pressing the
F1 button presents information about the current object and
its possible attributes. Before running an experiment, the
software checks if the definition file is valid. A list of valid
objects is presented in an adjacent window, and syntax
problems are highlighted. If an experiment definition is
valid, its component objects (blocks, trials, stimuli and
pages) can be accessed and tested separately via the Object
Browser. In addition, Inquisit provides a second useful test-
ing mode: Via the Tools menu, the experiment can be ad-
ministered to a computerized “monkey” that works through
the entire experiment by giving random responses to all
trials.

Objects and their attributes are defined as plain text in
the editor window. Alternatively, any other text editor can
be used to create and modify Inquisit experiment definition
files, and the plain text format also facilitates defining ex-
periment files automatically. For cases in which complex
stimulus materials or randomizations that are not supported
by Inquisit have to be prepared anew for each participant,
the software provides the feature of including externally
generated experiment definition files. For example, it is
possible to define the part of an experiment that stays con-
stant across participants (e.g., block and trial structure) in
one file, and to define those parts that vary across partici-
pants in another file (e.g., the stimulus material). After be-
ing generated manually or automatically, the second file is
then linked into the first file, thus completing the experi-
ment. This also helps in reusing objects that remain con-
stant across multiple experiments, for example biographi-
cal questions or debriefing information.

Running an Experiment

An experiment is executed on the experimenter’s computer
from within Inquisit or via a command line call. A partic-
ipant’s number is required for the experiment to start; it
can be entered manually or specified in the command line.

During an experiment session, pressing the Windows
key or the Alt � Tab keys results in switching to other
programs’ windows. Upon switching back to the Inquisit

window, execution continues with a repetition of the last
trial. Pressing the Ctrl � B keys skips to the next block,
and pressing the Ctrl � Q keys skips over the entire ex-
periment. These keys cannot be deactivated, and because
these events are not written to the data file, one cannot tell
if participants have pressed any of these keys. This may
potentially compromise the data. Inquisit can be configured
to lock the screen at the end of an experiment session to
prevent participants’ access to the computer.

Data Output

Data are output either as a fixed-width or comma-, tab-, or
space-separated text file at one trial per line. The values to
be stored, including actual millisecond onset of each stim-
ulus’s presentation, can be specified in the experiment def-
inition file. Data files can be encrypted and can be written
either to the hard disk, to a network share, an ftp or http
server, or sent to a specified e-mail address.

Implementing Test Experiments

Remember/Know Paradigm

Two Experiment objects were defined for each condition,
differing only with regard to the instruction for the presen-
tation phase. The presentation block randomly samples 30
trials from the concrete and abstract word presentation tri-
als. Each trial presents a stimulus word at onset that is
sampled from the respective pool of items without replace-
ment. The retention block is defined with a time-out of 300
seconds. The automatic generation of random arithmetic
problems is not supported. Therefore, arithmetic problems
are drawn randomly without replacement from a manually
generated, fixed pool of 100 problems (the number was
chosen to be large enough so that the fastest participant
will not be able to solve all problems before the time-out
is reached). For the test block, 60 trials are randomly sam-
pled without replacement from the four trial pools of con-
crete target words, concrete distractors, abstract target
words, and abstract distractors. Each of the trials presents
a stimulus word along with the old/new question and two
response key reminder stimuli. When an old response is
registered, a special trial is executed that presents the Re-
member/Know question along with two response key re-
minder stimuli for this question. After a response is reg-
istered to a Remember/Know trial, or when a new response
is registered to an old/new trial, the next old/new trial is
randomly drawn from the four pools.

Some limitations were observed during the implemen-
tation. First, Inquisit does not randomly assign participants
to conditions. It does, however, assign them to different
conditions according to the modulus of their participant
number. By manually selecting a random participant num-
ber before starting the experiment, random assignment to
conditions can be achieved. Second, Inquisit does not gen-
erate random arithmetic problems. Thus, the arithmetic
problems have to be created manually and added to the
experiment definition file, thereby presenting the same ran-
domly created set of problems to all participants.

Stahl: Experimenting Software228

Experimental Psychology 2006; Vol. 53(3):218–232 � 2006 Hogrefe & Huber Publishers

Lexical Decision Paradigm

To create the Lexical Decision task, a sample affective
priming experiment included in the installation is modified:
the positive and negative words are replaced with words
and nonwords, and instructions and response key remind-
ers are adapted, as well as stimulus presentation times and
interstimulus intervals and block length. For the word-
word trials, counter variables are defined such that selec-
tion of items is linked between the prime and target sets so
that the prime-target pairs are always presented on the same
trial. For the other trials, counter variables are specified
such that word and nonword items are selected randomly
without replacement. Additional stimuli are defined for the
fixation cross and the response window stimuli. A response
window object is defined, and the start values for center
and width are specified, as well as the stimuli to appear
during the response window and in case a response occurs
within the window. An adaptive increment of 33 ms was
implemented for the window center if accuracy is to fall
below 60 percent; similarly, a decrement of 33 ms was
implemented if accuracy is to rise above 90 percent. Min-
imum and maximum window center were set to 250 ms
and 1000 ms, respectively.

Both paradigms could be implemented, but some limi-
tations were encountered. Randomized assignment of par-
ticipants to conditions was not automated, and arithmetic
problems could not be generated automatically, nor could
the responses be checked for accuracy. At the same time,
some features were noted that are only provided by the
Inquisit package. Firstly, flexible performance feedback
can be given within instruction pages by including the de-
sired performance variable. And secondly, Inquisit is the
only package that includes an adaptive response window
feature.

SuperLab

The current release of the SuperLab package does not in-
clude critical features necessary to implement the test par-
adigms. Therefore, no comparison with the other packages
could be made. Specifically, SuperLab fails to collect open-
ended responses and provides no support for the presen-
tation of trials conditional upon participants’ responses. An
upcoming new release of the software is to include both of
these features. Here, an overview of the current release of
the SuperLab package is offered.

The main window presents a list for blocks, trials, and
events (see Figure 5). Those are the components a
SuperLab experiment is made of: a block serves as a con-
tainer for trials, and a trial serves as an event container.
When creating a new block, one has to specify a name and
whether the order of this block’s trials is to be randomized.
After creating and naming a new trial, one or multiple
events can be associated with it. Event types include pre-
sentation of text (of any font, size, or color), pictures, and
sounds, as well as interstimulus intervals, output via the
computer’s serial port, and control via a serial response
box. Event settings can be tested via the preview function
that is available for each stimulus type. For each event, a

number of input options are available. First, it can be spec-
ified whether an event accepts user input, and whether that
input is to be recorded. Events can be set to terminate when
the criterion response is registered, after a specified time-
out, or when either one occurs. A correct response is de-
fined experiment-wide as a set of response keys (e.g., “y”
and “Y”). Responses can be registered via standard key-
board or mouse, as well as from a wide range of external
response boxes that can be connected to the computer’s
serial port. For each experiment, however, only one input
device can be used.

For each event, different feedback trials can be specified
for one, some, or all of five cases: occurrence of a correct,
an incorrect, or a delayed response; and occurrence of a
reaction time less than a specified constant or greater than
a (second) constant.

A new trial can be specified as a feedback-only trial. In
this case, it is not presented with the list of other trials of
that block but is only shown if it is specified as a feedback
trial to some event (e.g., a trial presenting the Error string
would be presented among the other trials of a block unless
it is specified as a feedback-only trial to occur when an
incorrect response is registered). Trials are associated with
blocks, and events with trials by a mouse click on the
marker next to the trial or event name. When a block is
selected, the trials belonging to that block are marked. Sim-
ilarly, when a trial is selected, the events associated with
that trial are marked.

As mentioned above, the input device must be specified
for the entire experiment and cannot vary between blocks
or trials. Other settings that are fixed across the entire ex-
periment are the screen’s background color, the response
key sets, and trial codes. Trial codes represent the depen-
dent variables manipulated in the experiment, and its val-
ues represent factor levels. Each trial can be assigned to
one level on each factor, and those assignments are written
to the data file along with the responses, which helps with
subsequent data analysis.

By providing a simple point-and-click user interface and
a clear block-trial-event framework for experiments,
SuperLab facilitates the creation of experiments that fit the
given structure. This will be the case for many common
experiments. The advantage of a simple experiment frame-
work brings with it a lack of flexibility. Designs that do
not fit the framework, for example, because they require
more than one input device, different input devices for dif-
ferent blocks, different screen backgrounds for different
blocks, or even conditional trial execution are not easily
accommodated. While it is possible to simulate conditional
trial execution to a certain extent on the trial level, and, for
a skilled programmer, it is possible to extend the SuperLab
package with custom input modules or events, SuperLab
hardly reduces complexity in these cases.

Some additional points reduce the usability of the pack-
age. First, the program window does not represent the ex-
periment structure visually. Assignment of events to trials
and trials to blocks is not visible in the interface, with the
exception of the currently selected block or trial. In addi-
tion, trial and event lists presented in the program window
quickly fill up. As a result, even with a small experiment

Stahl: Experimenting Software 229

� 2006 Hogrefe & Huber Publishers Experimental Psychology 2006; Vol. 53(3):218–232

Figure 5. The SuperLab program window showing a sample experiment.

of less than one hundred trials, its structure is not made
clear in the program window. Secondly, order of blocks,
trials, and events cannot be changed once they are created.
Order of creation of blocks (and trials, unless randomized)
thus determines the order of their execution. Also, order of
creation of events determines order of occurrence of stim-
uli in trials. This can only be circumvented by manually
modifying the experiment definition file in a text or spread-
sheet editor. Finally, open-ended responses cannot be reg-
istered. This limitation is critical, and it renders SuperLab
incapable of administering one of the tasks included in the
test paradigms of this review. Therefore, in the remainder
of this review, SuperLab is not considered further. A new
version of the SuperLab packages has been announced for
the near future. The company promises to address the men-
tioned points and will improve the usability of the package.

Summary

All of the three remaining packages are capable of pre-
senting a wide range of text, graphic, and sound stimuli in
linear order. Similarly, all packages are capable of regis-
tering participants’ responses via keyboard and mouse.
Video stimuli and joystick responses are also supported (E-
Prime support has been announced for the upcoming new
release).

All packages are based on Microsoft’s DirectX technol-
ogy, therefore accuracy of stimulus presentation and re-
sponse registration can be assumed to vary little between

packages. When interference by third party software is
minimized, it can be assumed that timing accuracy largely
depends on hardware factors (e.g., monitor refresh rate,
keyboard buffer time).

All packages support some form of error feedback, yet
they differ in the flexibility they offer. While in Inquisit
and E-Prime, any stimulus can be defined as an error mes-
sage, DirectRT restricts the message to plain text. How-
ever, with the help of the conditional branching features
incorporated in Inquisit, DirectRT, and E-Prime, this re-
striction can be circumvented. The conditional branching
feature allows different trials to be executed depending on
participants’ responses to a preceding trial. Inquisit also
supports control over the sequence and the number of repe-
titions of blocks and trials depending on participants’ per-
formance. Within E-Prime, the above restrictions can be
overcome by inserting custom program code.

All packages feature the basic randomization procedure
of selecting items from a pool with or without replacement.
More complex, conditionally random sequences are gen-
erally not supported or not facilitated (i.e., the complexity
of generating such a sequence is not reduced by the pack-
age). However, all packages support incorporating exter-
nally prepared stimulus material into the experiment.

Detailed performance feedback is supported by Inquisit
and E-Prime. Inquisit features block- and experiment-wise
feedback of a number of latency and accuracy statistics. E-
Prime also supports basic latency and accuracy statistics;
in addition, the desired feedback can be generated with the
help of custom program code.

Stahl: Experimenting Software230

Experimental Psychology 2006; Vol. 53(3):218–232 � 2006 Hogrefe & Huber Publishers

An adaptive response window feature is provided by In-
quisit. E-Prime supports the definition of response dead-
lines, and an adaptive response window can be imple-
mented with the help of custom program code. A fixed
response window can be implemented in DirectRT.

Discussion and Conclusion

Among the reviewed packages, DirectRT achieves the
most complexity reduction. A simple experiment is most
easily implemented with DirectRT’s simple list structure
syntax, essentially reducing the task to specifying the stim-
ulus item, its location, and presentation time in a text edi-
tor. The other packages require generating longer and more
complex definitions (Inquisit), or first becoming acquainted
with a multiwindow visual user interface (E-Prime). There-
fore, DirectRT would be the package of choice where as-
sistance with standard paradigms and a quick start with
experimenting is the major objective. Also, DirectRT pro-
vides two unique response options: recording key release
times, and a voice key option including saving vocal re-
sponses for later analysis. However, although chances are
that a feature request will be fulfilled promptly, DirectRT
is not easily extensible and thus not able to accommodate
all experimental paradigms.

Among the reviewed packages, E-Prime retains the most
flexibility. The possibility of including custom program
code at any point in the course of events allows for a wide
range of possible extensions beyond what is already pro-
vided by the package. E-Prime would be the choice for
researchers who do not hesitate to write an occasional line
of Basic program code and who wish to implement all or
almost all experiments within one package. With E-Prime,
one can most likely avoid encountering the necessity of
learning an additional programming language; whereas
users of other packages will not be able to avoid program-
ming the more complex experimental paradigms using
other programming environments and languages. In addi-
tion to providing a maximum of flexibility, E-Prime also
strongly reduces the complexity of generating simple ex-
periments with its drag-and-drop visual user interface. It
allows the generation of standard paradigms without re-
quiring any programming knowledge and has been suc-
cessfully used in undergraduate and graduate courses
(MacWhinney, James, Schunn, Li, & Schneider, 2001).

In between, Inquisit is positioned as a compromise op-
tion. Although it takes some time to get used to the more
complex definition syntax, implementing the first experi-
ment is still quite easily accomplished due to the available
samples for a number of standard paradigms, the context-
sensitive reference, and helpful debug options and mes-
sages. While it is limited in the paradigms it supports, In-
quisit provides more flexibility than DirectRT (e.g.,
response window options) and supports features not in-
cluded in the other packages (e.g., speech recognition,
World Wide Web experimenting).

The reviewed packages provide the most assistance in
implementing standard paradigms of serial visual and
acoustic presentation and registration of responses via key-

board, mouse, joystick, and response boxes. For these ap-
plications, they provide robust frameworks that reduce
complexity of the programming task as well as the time
needed for creating and debugging experimental programs.
A majority of scientists will be able to implement a ma-
jority of their studies within these packages. Yet, some
paradigms and features (e.g., those that employ complex
counterbalancing or interactive generation of stimulus ma-
terials, randomization that must satisfy nonstandard con-
straints, complex response window procedures, interaction
with nonstandard external hardware, custom performance
feedback, or a sequence of events that is conditional upon
participants’ responses) are often not well supported.

In particular, it will be difficult to implement dual-task
paradigms. In those paradigms, stimulus presentation and
response registration occurs in parallel for the two tasks.
For example, participants can be asked to press the space
key when a sound is played to the left ear while at the same
time providing word/nonword responses with the A and 5
keys. In this example, two responses can occur at the same
time. Registering responses to two different tasks in par-
allel is not supported in the reviewed packages. As a con-
sequence, one should still be prepared to implement some
studies with programming languages like C��.

Alternatives to the reviewed packages do exist. For ex-
ample, the exclusion of MS-DOS based packages is based
on the fact that support for new hardware is potentially not
provided, but does not imply any judgment regarding ease
of use and flexibility of these packages. They still provide
valuable service to a lot of researchers using a variety of
experimental paradigms, and the fact that these packages
can run reliably on older computers can be considered an
advantage.

Psychophysical research requires special support for a
wide range of visual and acoustic stimuli, for adaptive test-
ing, stimulus adjustment by participants, and calibration of
output devices. These special requirements are not met par-
ticularly well by the reviewed packages. The Psychophys-
ics Toolbox (Brainard, 1997), an extension to the Matlab
package, provides these functions and is thus a better al-
ternative for psychophysics researchers (for an overview
of software for psychophysics researchers, see Strasburger,
2004).

Another set of alternatives is available for experiments
for the Web platform. A class of Web-based software for
data collection is currently being developed that does not
require installation on participants’ computers (e.g., Ex-
press, Yule & Cooper, 2003; SurveyWiz and FactorWiz,
Birnbaum, 2000; WEXTOR, Reips & Neuhaus, 2002).
These packages provide assistance in creating Web-based
experiments that can also be run in the lab (for a review of
Web experimenting tools see Reips, 2002.

Some of the mentioned software packages can also be
used as a teaching tool (MacWhinney et al., 2001; Reips
& Neuhaus, 2002). Other software packages that can be
used for teaching are reviewed by Ransdell (2002).

In this article, four software packages for creating psy-
chological experiments were reviewed. Although one can-
not expect the reviewed packages to completely release
researchers from any programming needs, by choosing a

Stahl: Experimenting Software 231

� 2006 Hogrefe & Huber Publishers Experimental Psychology 2006; Vol. 53(3):218–232

package that works best with the paradigm used in most of
his or her studies, an experimental psychologist can expect
to reduce the effort necessary for programming and de-
bugging and to lower the hurdle for conducting a first ex-
periment.

Acknowledgments

The author wishes to thank Jörg Beringer of Berisoft, Sta-
cie Jarman of Cedrus Software, Blair Jarvis of Empirisoft,
Sean Draine of Millisecond Software, and Amy Eschman
and Cindy Carper of Psychology Software Tools for pro-
viding evaluation copies of the software packages and for
their assistance in implementing the test experiments, and
Karl Christoph Klauer, Rainer Leonhart, Sarah Teige-
Mocigemba, Andreas Voß, and two anonymous reviewers
for helpful comments on an earlier version of this manu-
script.

References

Birnbaum, M. H. (2000). SurveyWiz and FactorWiz: JavaScript
Web pages that make HTML forms for research on the Internet.
Behavior Research Methods, Instruments, & Computers, 32,
339–346.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vi-
sion, 10, 433–436.

De Clercq, A., Crombez, G., Buysse, A., & Roeyers, H. (2003).
A simple and sensitive method to measure timing accuracy.
Behavior Research Methods, Instruments, & Computers, 35,
109–115.

Direct RT (Version 2004.1.0.55) [Computer program]. New
York (http://www.empirisoft.com): Empirisoft.

E-Prime (Version 1.1) [Computer program]. (2004). Pittsburgh,
PA (http://www.pstnet.com): Psychology Software Tools.

Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows dis-

play program with millisecond accuracy. Behavior Research
Methods, Instruments, & Computers, 35, 116–124.

Inquisit (Version 2.0.41230.0) [Computer program]. (2004). Se-
attle, WA (http://www.millisecond.com): Millisecond Soft-
ware.

MacInnes, W. J., & Taylor, T. L. (2001). Millisecond timing on
PCs and Macs. Behavior Research Methods, Instruments &
Computers, 33, 174–178.

MacWhinney, B., James, J. S., Schunn, C., Li, P., & Schneider,
W. (2001). STEP—A system for teaching experimental psy-
chology using E-Prime. Behavior Research Methods Instru-
ments, & Computers, 33, 287–296.

Myors, B. (1999). Timing accuracy of PC programs running un-
der DOS and Windows. Behavior Research Methods, Instru-
ments, & Computers, 31, 322–328.

Plant, R. R., Hammond, N., & Whitehouse, T. (2002). Toward
an experimental timing standards lab: Benchmarking precision
in the real world. Behavior Research Methods, Instruments &
Computers, 34, 218—226.

Ransdell, S. (2002). Teaching psychology as a laboratory science
in the age of the Internet. Behavior Research Methods, Instru-
ments, & Computers, 34, 145–150.

Reips, U.-D. (2002). Standards for Internet-based experimenting.
Experimental Psychology, 49, 243–256.

Reips, U.-D., & Neuhaus, C. (2002). WEXTOR: A Web-based
tool for generating and visualizing experimental designs and
procedures. Behavior Research Methods, Instruments, & Com-
puters, 34, 234–240.

Strasburger, H. (2004). Software for psychophysics: An overview.
Retrieved August 31, 2005, from http://www.lrz-muenchen.de/
�Hans_Strasburger/psy_soft.html.

SuperLab Pro (Version 2) [Computer program]. (2004). San Pe-
dro, CA (http://www.cedrus.com): Cedrus Corporation.

Yule, P., & Cooper, R. P. (2003). Express: A Web-based tech-
nology to support human and computational experimentation.
Behavior Research Methods, Instruments, & Computers, 35,
605–613.

Appendix
Experiment 1. Remember/Know Paradigm

Design

A 2 (imagery vs. rote instructions) � 2 (concrete vs. ab-
stract nouns) design with a between-participants manipu-
lation of the first and a within-participants manipulation of
the last factor was implemented.

Materials and Procedure

Fifteen concrete and abstract target nouns (as judged by
the experimenter) were selected for presentation (Sets A
and B). Additionally, 15 abstract and concrete distractor
nouns were used in the memory task (Sets C and D). In-
structions were to inform participants about the following
presentation phase and, in the rote rehearsal condition, to
instruct them to keep repeating the words silently to be able
to remember them better in the subsequent memory test.

In the imagery condition, participants were to be instructed
to vividly imagine each item visually. Items were randomly
sampled without replacement; presentation duration was
3,000 ms.

In the retention interval between the presentation and the
test phases, participants were to solve simple arithmetic
problems for a fixed time of 5 minutes. The problems were
multiplications of randomly created numbers between 1
and 10. The solution of each problem was to be typed into
the computer as an open-ended text response. Participants’
responses were to be checked for accuracy, and accuracy
feedback was to be given. The number of solved problems
as well as the number of correctly solved problems was to
be recorded to assess participants’ compliance.

The memory test instructions were to introduce partici-
pants to the memory test procedure as well as to the mne-
monic states calling for a remember versus a know re-
sponse. The 30 target items and the 30 distractors were to

Stahl: Experimenting Software232

Experimental Psychology 2006; Vol. 53(3):218–232 � 2006 Hogrefe & Huber Publishers

be mixed and presented in random order without replace-
ment. In the parallel test version, the item was to be pre-
sented along with the three response options: remember,
know, and new. In the sequential test version, the item was
to be first presented with the two response options old and

new. Upon an old response, the next screen was to display
the Remember/Know question along with the response op-
tions remember and know; whereas upon a new response,
the next item was to be presented. At the end of the mem-
ory task, accuracy feedback was to be given.

Experiment 2. Lexical Decision Paradigm

Design

A 2 (Set A vs. Set B) � 2 (related vs. nonword primes) x
2 (word targets vs. nonword targets) design was imple-
mented with repeated measures on the last two factors.

Materials and Procedure

Twenty pairs of semantically related words were con-
structed by the experimenter. One word from each pair was
randomly assigned to Set A1, the other was assigned to Set
B1. Similarly, 20 pairs of nonwords were constructed and
divided into two sets, A2 and B2. In Condition A, each
word from Set A1 was to appear as a target twice—once
preceded by its Set B1 partner as prime, and once by a
randomly selected nonword from Set B2. Similarly, each
nonword from Set A2 was to be presented as a target
twice—once preceded by a randomly selected Set B1
word, and once preceded by a randomly selected Set B2
nonword. Thus, in Condition A, each word and nonword
from Set B was to appear twice as a prime—once for a
word from Set A1, and once for a nonword from Set A2.
Analogously, in Condition B, Set B words and nonwords
were to appear as targets twice, once with a Set A1 word
and once with a Set A2 nonword as prime. In total, 80
trials were to be presented in five blocks of 16 trials each.

Participants were to be instructed to decide whether a
letter string is a word or not. A word response was to be
given with the “A” key, and a nonword response was to
be signaled by pressing the “5” key. In the fixed time-out
condition, they were to be instructed that a response has to
be given before a time-out of 700 ms. In the response win-
dow condition, instructions were to require that partici-

pants answer after a signal appears but before it turns to
red. If a response was to fall into the response window, the
signal was to turn green for 300 ms. The response window
was to initiate at a center of 500 ms and a width of 400
ms, thus ranging from 300 ms to 700 ms. If possible, the
center value was to be increased adaptively by 33 ms if
accuracy for the last block was to fall below 60%, and
decreased if it was to rise higher than 90%.

Each trial was to start with a fixation cross presented for
1,000 ms. A string of 10 Xs was to appear as a forward
mask for 70 ms. Subsequently, primes were to be presented
at the center of the screen for 35 ms and were to be masked
by a string of Xs for 70 ms. At 500 ms after prime onset,
the target was to be presented at the same location and to
remain on-screen until a response was registered or until
time-out, whichever occurred first. At window onset, a “!”
sign was to be presented. In case of a response within the
window, it was to turn green and remain on-screen for
another 300 ms, or else the “!” sign was to turn red and
remain on-screen for another 300 ms. Accuracy feedback
was to be presented for 500 ms after each trial. At the end
of each block, participants were to be informed about their
mean reaction times and error rates.

Christoph Stahl

Institut für Psychologie
Albert-Ludwigs-Universität Freiburg
D-79085 Freiburg i. Br.
Germany
Tel. �49 (0)761 203 2418
E-mail stahl@psychologie.uni-freiburg.de

View publication statsView publication stats

https://www.researchgate.net/publication/6834061

